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Abs t r ac t .  The properties of an extremely diluted asymmetric network of neurom 
with a sigmoidal response function are investigated. It is shown that in the absence 
of thermal noise the storage capacity increases with decreasing gain of the response 
function. The information capadty of the network in the case of multistate patterns 
is discussed. It turns out that the network can process only a finite amount of 
information in spite of the unbounded amount of information that can be encoded 
in multistate patterns. 

1. I n t r o d u c t i o n  

The  close relationship between neural networks with binary formal neurons and well 
known k ing  spin glass systems [l] has in the past lead to many insights into the nature 
of attractor neural networks [2]. From a pliysiological point of view however, the firing 
rate S o f a  neuron should he a continuous function of the post synaptic potential (PSP) 
h: 

S = dyn(h) (1) 

where the input/output relation dyn is of sigmoidal shape. The  use of binary variables 
is equivalent to the approximation of dyn by  the sign-function. 

A network of graded response neurons was proposed by Hopfield in 1984 [3] hut an 
analytical investigation of this model has not  been carried out until recently: Marcus 
et a/ 141 considered the  Hopfield-Little model with deterministic parallel dynamics and 
dyn(h) = t anh (h / r ) .  They found tha t  the inverse gain r of the sigmoidal response 
function and the temperature in the usual binary Ilopfield-Little model with stochastic 
dynamics [5] play a very similiar role. In particular, the storage capacity of the network 
decreases with decreasing gain. Though their calculations are only approximative, 
their findings are supported by numerical simulat,ionst. 

In a series of papers, Treves [7-91 discusses a network with a threshold-linear 1/0 
relation 

t After this work was completed, I hecame aware of the work of Kiihn e l  of 161 who presented a 
replica calculation of this model which qualitat,ively confimes the results of [4]. 
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and additional terms in the PSP to include inhibition. Among other things he cal- 
culated the information capacity of this network. This is a quantity of considerable 
interest in a network with graded response neurons since such a network can process 
more complex patterns than just binary ones. 

With the exception of [9] all work cited so far relies on the symmetry of the synap- 
tic coupling matrix. This assumption clearly contradicts physiology. In biological 
networks a large fraction of the synaptic connections are even unidirectional. In the 
limit of low mean connectivity, an analytical treatment of such asymmetric networks 
becomes feasible, as has been demonstrated for the Hopfield-Little model [lo, 111. 

The technique developed in [ll] can easily be generalized to apply to a rather broad 
range of network models-including models with an arbitrary 1/0 relation dyn(h) 
This fact is used in the present contribution where the properties of an extremely 
diluted asymmetric network with sigmoidal 1/0 relation are discussed. The paper is 
organized as follows. Section 2 contains the definition of the model and its solution 
in terms of evolution equations for the order parameters that describe the network 
on a macroscopic level. Section 3 comprises a discussion of the retrieval properties 
of the network. In particular i t  will be shown that the storage capacity increases 
with decreasing gain, which is exactly the opposite effect one can observe in fully 
connected, symmetric networks. In section 4 we store multistate patterns in the 
network and discuss the achievable information capacity. I t  will turn out that ,  under 
certain conditions, binary patterns yield the best transfer of information even in a 
network of analogue neurons that could represent any multistate pattern. After the 
summary in the final section, a short appendix is added where the evolutiou equations 
for a network with unspecified 1 / 0  relation, a generalized Hebbian learning rule and 
an arbitrary distribution of pattern-activities are depicted. This appendix elucidates 
the broad range of network models to which the techniques of [ll] are applicable. 

In considering a network of continous variables in the high dilution limit, this 
work has some overlap with that of Treves [9]. There are, however, some differences 
concerning the model as well as the questions being addressed. The linear 1 / 0  relation 
(2) used by Treves does not take neural saturation into account and has no simple 
'binary limit' to compare the effects of continous firing rates directly to discrete models. 
These features are provided by the present model. Rather than concentrating on the 
role of the graded response, Treves concentrates on the effects of the learning rule and 
the distribution of pattern activities, whereas we will use only the simple IIebbian 
learning rule and equally distributed pattern activities. 

At this point it should be mentioned that, independently of this work, Rieger 
[12] has  developed another formalism to treat extremely diluted a3ymmetric networks 
with arbitrary 1/0 functions based on a master equation with appropriate transition 
probabilities. In the absence of thermal noise and for random sequential dynamics, 
both formalisms should yield the same results-e.g. the phase diagram (figure 1) in  
section 3 has also been found by Rieger. 

2. The model 

The model consists of N continuous variables Si ( t )  6 [-1,1] ('firing rates') which obey 
the discrete time dynamics 
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where J i j  is the efficacy of the synaptic junction from neuron j to neuron i. The 
primed sum indicates summation over j # i .  To capture the influence of thermal 
noise, the term ai(t) is added to the PSP. The Q i ( t )  are stochastic variables, drawn 
independently from a distribution tu(@) with = 0. The updating according to 
(3) proceeds either simultaneously for all Si (parallel dynamics) or for one randomly 
selected Si a t  each time step (random sequential dynamics). 

The parameter r is the inverse gain of the sigmoidal 1/0 function tanh. The 
binary Hopfield-Little model is recovered for r + 0 ('high gain limit') and the special 
choice [ll, 131 

$ 1  
2 cosh' $@ 

tu(@) = - 

since in this case (3) can be rewritten as 

Si(t,,+l) = zk1 with probability i[l f tanh$hi(t,)] 

which is nothing but the well known Glauber dynamics of an king spin in the local 
field hi at temperature p-'. 

It should be noted that the choice of a sigmoidal 1/0 relat,ion like the hyperbolic 
tangent fixes the values S = f l  as the maximum (minimum) inducable firing rates of 
a neuron. 

To act as an associative network, the system has to 'learn' a set of P prescribed 
patterns E',  j~ = 1,. . . ,P with E" = ( ( f , .  . . ,(;). As in the Hopfield-Little model the (r are assumed to be independent stochastic quantities, distributed according to 

d0 = $ 6 ( F  - 1) + i 6 (1+  1)  ( 5 )  

and the learning process is realized through a modification of the synaptic efficacies 
P-. ..-*I. __... --++..-- CP """-.,I;..- &- Er..hh,- ".. le 
L Y I  L L l b l L  .I-.. y Y U U C L . .  \ OLC'Y.U...& Y Y  .I-"" U L Y L I .  

AJ,, a.$[f. (6) 

If the couplings J i j  were symmetric (i.e. J i j  = J j i )  before any patterns have 
been learned, then the learning rule (F)  clearly preserves this symmetry. In biological 
networks the couplings are however supposed to be unidirectional, i.e. if Jji # 0 then 
Jji  = 0. To account for this feature in the present model, the couplings are written as 

The S " m  arises from (6) and the assumptio!? that the neurons were comp!&!y discon- 
nected before the learning process ('tabula rasa'). The c,, are independent random 
(0 , l )  variables with 

with probability I</N 
with probability (1 - K / N )  
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i.e. the mean number of synapses per neuron is IC. Note that the independence of 
the ci, can imply unidirectionality, i.e. Ji,J,i # 0 with probability I t  is now 
assumed that the connectivity I< is small compared to the number of neurons in the 
system: 

log IC 
lim - - - 0  

N - m  log N (9) 

Then each coupling in the network is unidirectional with probability 1. There is how- 
ever yet another motivation for this somehow artificial constraint: analytical solvabil- 
ity. As was first pointed out by Hilhorst and Nijmeijer 1141, equation (9) guarantees 
that no neuron appears more than once in the tree of dynamical ancestors of any 
neuron. This fact is used to reduce the dynamics of the network to the dynamics of a 
single neuron in an effective PSP 

where a = €'/I< is the storage ratio and y ( t )  is a Gaussian variable with zero mean 
and 

(Y(t")Y(t,)) = C", ( 1 1 )  

where qu and C,, have to be determined self-consistently from 

= (Wn)S(tm))*,,,, ' (13) 

Note that the limit IC -t cc h a s  to be taken to achieve this result. qv is called 
the overlap of the network with pattern E" and C,, := C,, = (S2(tn)) the mean 
activity of the network. Note that for uncorrelated patterns the system can have 
a non-vanishing overlap with only a finite number s of patterns. Starting from the 
single neuron dynamics in the effective local field (10) it is straightforward to obtain 
evolution equations for the order parameter q, and C. For parallel dynamics they are 

Note that due to the Gaussian character of y and the locality in time of the effective 
PSP (lo), the C,, with n # m do not appear in these evolution equations. 
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3. Retrieval properties 

The long-time behaviour of the system is governed by the fixed points of the evolution 
equations for q and C. For both parallel and random sequential updating the fixed 
points are given by 

&ere it !I= been w-.xrr?ed thzt the net-o:k !I= a finite everlzp &!I cn!y one ef the 
patterns: q, = q6vv0 (Mattis state) and for the time being the thermal noise is set t o  
zero. 

It is worth noting that  (16) and (17) are formally identical with the self-consistent 
equations found in the replica symmetric solution of the SK model with ferromagnetic 
interaction [15]. 

T h e  stable solutions of (16) and (17) depend on a and r and are summarized in 
the ( a , r )  phase diagram in figure 1. A trivial fixed point is ( q  = 0,C = 0). It is stable 
provided r > 1 and fi < r. These inequalities determine phase II ('zero activity 
phase') offigure 1. Beside this trivial fixed point there are two possible kinds of stable 
fixed points, both with C > 0. One is the 'non-retrieval fixed point' q = 0, where 
the network does not remember any pattern (phase In), the other one is the retrieval 
fixed point zk: > 0 ( p h ~ e  I ) ,  +ere ?he system h a  finite corre!ztlon with z pzttem 
( or its complement -(. The  basins of attraction of the q and the -q fixed point 
are separated by the unstable fixed point q = 0. T h e  line that  separates the retrieval 
phase from the non-retrieval phase is denoted a,(T) and is given implicitly by 

An expansion of this equation in powers of I' yields 

a,(r = 0) = 2/rr  as it should be since r = 0 corresponds to  the well known case 
of binary neurons [IO]. a$) is monotonically increasing with r up to its maximum 
value a,(r = 1) = 1. It should be noted tha t  the plime boundaries between the phases 
I1 and I11 and between the phases 1 and I1 as well as the endpoints of the line a,(r) 
are independent of the special choice of the hyperbolic tangent as the  1 / 0  funct,ion as 
long as this function is sigmoidal, odd and has its maximum slope r-' a t  argument 
zero. 

The retrieval overlap q goes t o  zero continously if one approaches the phase bound- 
aries a, or r = 1 (figure 2 ( a ) ) .  Note that  the second-order phase transition of q(a) 
at a = ac reflects the sign symmetry of the underlying dynamics. For I/O relations 
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1.5, , 

1 .o 1 'Ib q=o c' 

I: *q>o c>o 11: q=o c=o 

0 . 0 1 ,  r , ,  I , ,  , , I , ,  , 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 114 

r 
Figure 1. Zer-temperature phape diagram. r: inverse gain of rhe response 
function; a: number of leamed pattern per synapse. r = 0 corresponds to the 

binary Hopfield-Little model in its extremely diluted version. 

without this symmetry (like the threshold linear function of Treves [9]) this phase 
transition is found to be of first order. 

For r < 1 the activity C decreases with increasing a, takes on its minimum value 
Cmi, = 1 - r for a = 01, and increases with 01 for a > a, up to C = 1 for a --t 03 

(figure 2 ( b ) ) .  This behaviour can easily he understood considering the local field 
h = Eq + m y .  h is Gaussian distributed with mean t q  and variance aC. For 
01 > ae, q = 0 and any increase of a increases the fluctuations of the PSP around 
zero, leading to an enhancement of C = (S2). For a < ac this effect is more than 
compensated by the decrease of q with increasing a which pushes the mean value of 
h closer to zero and therefore tends t o  decrease C. 

C < 1 means that the neurons are operating away from their saturated levels f l .  
By the choice of the hyperbolic tangent as 1/0 relation for a single neuron one is 
forced to interpret the firing rates f l  as the maximum (minimum) firing rate t1iat.a 
postsynaptic potential can induce. Therefore C < 1 means that the neurons operate 
below their maximum and above their minimum firing rate. The former is desirable 
from a physiological point of view since real neurons appear to operate far below their 
maximum firing rate [16,17]. The fact that the lower firing rates are increased at  the 
same time is due to the symmetric treatment of inhibitory (negative) and excitatory 
(positive) contributions to the postsynaptic potential in our network. 

It is interesting to note that the correlation with the pattern vanishes disconti- 
nously at r = 1. This can be seen in figure 2(c) where the cosine Q of the angle 
between and S = (SI,. . . ,SN) 

is plotted as a function of a and r. An expansion of (16) and (17) around q = 0 = C 
yields 

Q(T = 1) = 6. 
This discontinouity of Q indicates that q goes down to zero continously for r - 1 
only because C does. 
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Figure 2. Fixed-point values of the orderparemeters p (a), C (b) and the normalized 
overlap Q = qfv@ (c) as functions of the storage ratio cz and the inverse gain r for 
zero temperature. 

ac is a measure for the maximum number of patterns that can be stored and 
retrieved. The phase diagram indicates that  this storage capacity can be increased 
by allowing the neurons to  react more smoothly on the postsynaptic potential. This 
is exactly the opposite effect that one can observe in the fully connected version of 
this model, where a,(r) is a monotonically decreasing function [4,6]. The root of this 
distinct behaviour lies in the way the noise enters the PSP in both models. Here we 
have a Gaussian noise whose variance scales with C and the net effect of decreasing 
q (bad!) and decreasing C (good!) with increasing r allows for an enhancement of 
ac. In the fully connected model the noise depends in a more.complicated manner 
on the order parameters. It has been shown [4,6] that the inverse gain r of t,he 
analogue neuron model with deterministic dynamics and the temperature in t,he usual 
binary Hopfield-Little model with thermal noise play a very similiar role. With this 
analoguey in mind i t  should not come as a surprise that a,(F) is a decreasing function. 
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0 

l- 

Figure 3. Phase diagram for four different temperatures. The area underneath 
each curve is the retried phase with q # 0. Note that the storage capacity a,(r) 
increses for small values of r and decreaes for larger values of I'. 

In the presence of additional noise, the monotonicity of a,(r) is no longer guar- 
anteed. This can be seen most easily by adding thermal noise with finite strength to 
the PSP. Now there is of course no fixed point with C = 0 and we distinguish only 
between two phases: the retrieval phase with q # 0 and the non-retrieval phase with 
q = 0. Figure 3 shows the effect of thermal noise distributed according to 

1/2T if -T 5 @ 5 T 
otherwise 

on the phase diagram. The 'temperature' T is a measure for the fluctuations in the 
synaptic noise: (a2), = T2/3. The retrieval phase gets smaller with increasing 
temperature and above a critical temperature T, = 1 there is no retrieval phase at all. 
The endpoints of the phase boundary a,(r) resp. r,(a) are given by 

and 

where erf-'(z) is the inverse of the error function 

z 
2 

erf(z) = - J d l  e-*' 
0 

J;; 

For finite temperature the curve a,(T) is still monotonically increasing up to a certain 
valuc of I?, but for larger values of r it decreases! The explanation of this behaviour 
is clear: in the presence of thermal fluctuations C cannot become arbitrary small as 
r increases, while q(r) still tends to zero. The balance between q(r) and C(r) is 
disturbed and a, decreases. For small r, the pattern-induced noise is much more 
important than the thermal fluctuations and the behaviour of cr,(r) is the same as for 
T=O. 
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4. Information c a p a c i t y  

A network with analogue neurons can represent in principle more complex patterns 
than just 'on/off' vectors. T h e  equations in the  appendix show tha t  the retrieval prop- 
erties of the network are to a great extent independent of the  distribution of pattern 
activities-at least for Mattis states and as long as each <: is drawn independently 
from the same distribution p ( ( ) .  We denote the second moment of this distribution 
wim \ < - I  aim uenne m e  renormaiized inverse gain i" and iemperaiure T' io be ...:A, 1 P 2 ,  -~., 1 ~ C ~ ~ ~  1 1 ~  

Then the phase diagrams figures 1 and 3 are valid for any distribution p(<) ,  provided r 
and T are replaced by  their renormalized values. For fixed gain and zero temperature 
this implies t ha t  the storage capacity ac increases with decreasing (<'). 

For a network tha t  processes more complex patterns than binary ones, the infor- 
mation capacity of the  network is an interesting measure of performance. I t  is defined 
as the total amount of information tha t  can he stored and retrieved in the network. 
The  concept of information transfer is borrowed from the theory of communication 
via a noisy channel [18] and has been applied in the context of neural networks by 
several a u t h o r s s e e  for example [19]. 

Suppose we have p s t a t e  patterns, i.e. p(<) consists of p 6-functions 

P 

dt) = wk6(< - I l k )  
k = l  

with Ck wk = 1. Then the information content in bits of one pattern is given by 

In the absence of thermal noise and for a = 0 and 0 < r' 5 1 we have a one-to- 
one correspondence between the fixed point response level Si and the corresponding 
activity (, of the condensed pattern: the total amount of information contained in 
the pattern is preserved in the retrieval state. This information content can he very 
high for multistate patterns: it grows roughly like logp. Note tha t  this preservation 
of information for a = 0 holds for any degree of synaptic dilution-even for the fully 
connected model. 

Thermal noise or a finite a destroys this strict one-to-one correspondence between 
the response levels and  the pattern activities qk: information is lost in the process of 
storage and retrieval. The  amount of lost information is defined as the information 
needed to reconstruct the correct e, from the response levels Si. To calculate t,liis we 
divide the interval [-1, +1] of response levels into n sub-intervals and denote with tu: 
I L ~  ... L.L:II~.~ I L . I  L L ~  ...-._-- I I - c  - -~ P-II.. :- &L- tth :..A -_..I I _ - _ I  I L -  
hue pruuaurr,ry L n a b  b u t !  reapvllsr lCYCI UL a IISULVII  la115 111 b,!C I nr1bCL"al  "nu bllC 

corresponding activity of the condensed pattern was qk. Then the information needed 
to reconstruct the pattern from this joined probability distribution is given by 
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where w' = Ck w: is the probability of finding a response level in the Ph interval 
non-regarding the pattern activity. This amount of information has to  be subtracted 
from (28) to  yield the amount of information that can be stored and retrieved for a 
single pattern. Since we can store and retrieve OK patterns in the network, we arrive 
a t  

for the total information capacity of the network measured in bits/synapse. 
Of course Z depends on the way the continuous range of response levels is divided 

into n intervals. Without any a priori  knowledge about how the pattern is encoded 
in the distribution of response levels it seems reasonable to  choose an equidistant 
subdivision into n intervals [U,-l,~,] with 

(31) 
21 

U, :=- l+ ; .  

Now I still depends on the resolution, i.e. on the number of intervals. We will study 
two cases. The high-resolution limit n - 00 and the limit of minimal resolution 
n = p .  I t  foiiows from the convexity of -z log z that I increases with increasing n.  In 
that sense, the information capacity in the high-resolution limit (denoted I,) is the 
optimal value that can be achieved. n = p is the minimal resolution that allows the 
network in principle to recover the total information contained in a p s t a t e  pattern. 
This choice of n can be motivated by the assumption that learning and retrieving may 
proceed with the same resolution. 

in the absence oi thermai noise i can be caicuiated irom 

for finite n. In the high-resolution limit we have 

with 

where q and C are the usual order parameters. One could easily study the evolu- 
tion of Z in time during the process of retrieval but we confine ourselves to  the long 
t ime  hehzyioor, i,e, w e  insert the ~.ta!!onsry values of the order parameters into the 
expressions for I .  

For simplicity we assume that the pattern activities can take on the values 

k- 1 
q k = - 1 + 2 -  

P -  1 
(35) 
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with equal probability, i.e. wk = l/p. Figure 4 shows the information capacity for 
3-state patterns over the whole retrieval phase for both maximum and minimum res- 
olution. In both cases, I varies strongly with (I and reaches its maximum value 
somewhere halfway in-between 0 and a,. The dependence on r' is much weaker in 
the high-resolution limit than it is for minimum resolution. This can easily be under- 
stood by taking into account that r' enters I ,  only indirectly via the value of q/&, 
which in turn varies very slowly with r (figure 2(c)), whereas for minimum resolution 
there is a direct interference between r' and the fixed read out intervals [U,-,,U,]. 
Consider for example the case r* close to 1: Though the ratio q/& is finite, the PSP 
is close to zero for all possible pattern activities and due to the finite resolution most 
of the response levels Si fall into the same interval-the one that contains the zero 
activity response level. This uniform assignment implies of course a complete loss of 
information about the condensed pattern which is contained in the fine structure of 
the response level distribution. The same mechanism works in the regime of small I", 
i.e. very steep I f 0  function. Here most of the response levels fall into the intervals 
[-1, -1 + 2/p] and [l - 2/p, 11 and it  is only the information about the sign of the 
pattern activities which is retrieved. This explains the stronger dependence of I on 
l" for minimal resolution. However, even I, has  a flat maximum as a function of r'. 

I -  

). :\ 
Figure 4. Information capacity for >state pattans in the high resolution limit (a) 
and for minimum resolution ( b )  in bita/synapee. 

Table 1. Maximum information capacity in bits/synapse for the atorage and re- 
trieval of pstate pattans in the limits of high ( I , )  and minimal ( I )  resolution. 

P 2  3 4 5 10 15 
I ,  0.283 0.271 0.269 0.269 0.268 0.268 
I 0.232 0.227 0.241 0.249 0.262 0.266 

In table 1 the value of the maximum (2s a function of a and I?') information content 
is monitored for different values of p for both resolution regimes. Let us consider 
first the high-resolution limit. Despite the fact that both the information content 
of a pattern and the storage capacity oC increase with increasing p ,  the information 
capacity I, decreases. For large p the 'signals' Fin  in the PSP are very close for 
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adjacent values of the discrete pattern activities. This enhances the impact of the 
noise on the process of filtering out  the correct q r .  According to the table, this 
deterioration of the retrieval quality more than compensates for the higher a priori 
information content of the pattern and the increase of ac. In terms of information 
capacity, the optimal representation of information seems to be the binary o n e a t  
least in the high-resolution limit. This result agrees well with the findings of Treves 
[9] for the threshold linear model and biased pattern distributions. 

For minimal resolution the situation is different. Here the enhancement of the 
resolution in the readout process with growing p is the dominant effect, leading to an 
increase of I with increasing p .  For large values of p both readout procedures converge 
to the same value of maximum information content: 

p > 2  I - I , ~ 0 . 2 6 8 .  (36) 

In both cases this value is achieved for 01 2 0.4 and I?' Y 0.75. Not,e that even 
in the case of minimal resolution and p = 2 ,  i.e. when the information is processed 
completely in terms of the sign of the Si, the maximum information capacit,y of the 
graded response network ( I  U 0.232 for r 2 0.4) exceeds that of the usual binary 
version ( IN 0.216 for r = 0). 

5. Summary 

Networks of analogue neurons have recently attract,ed much interest. A common result 
of all the research in that field seems to be that well known analytical tools, originally 
deveioped for discrete variabies, can very easiiy be extended to cope with continuous 
quantities. The present work is no exception in that it demonstrates how the technique 
of tackling extremely diluted asymmetric networks as was presented in [ll], can be 
used to investigate'such networks with a sigmoidal 1 / 0  relation. 

We have seen that the storage capacity a, increases with decreasing gain of the 
response function as long as the thermal fluctuations can be neglected with respect 
to the pattern-induced noise. In the regime where the thermal noise becomes more 
important, a$) decreases. 

We further addressed the question of the amount of information that can be trans- 
ferred by the network from the learned patterns to the retrieval state. This information 
capacity depends on the amount of information encoded in the patterns, the retrieval 
properties of the network and the procedure to read out the information. We have 
seen that the maximum iniormation capacity ior unbiased pstate  patt,erns converges 
for large p rather quickly to a value of ahout 0.2G8 bits/synapse, though the informa- 
tion content of a single pattern grows like log,p. For a readout procedure with high 
resolution, the best information transfer is achieved for binary pat,terns. 
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Appendix. 

T h e  formalism of extremely diluted, asymmetric networks as has been presented re- 
cently by Kree and Zippelius [Ill permits the  analytical treatment of a very broad 
class of networks, avoiding at the same time the  cumbersome combinatorial arguments 
of the original formalism [IO]. Consider parallel or random sequential dynamics with 
an arbitrary 1/0 relation dyn(h): 

I t  should be noted that no constraints like for instance monotonicity, continuity or 
boundedness have t o  be imposed on dyn in the  course analytical solution. The  PSP 
h,(t) is composed of two parts: 

N 1 N 1 
h ; ( t )  = 7 C ' c i j J i , S j ( l )  + - xf[Sj(t)] 

j = 1  N j =1  

T h e  first t e rm is the usual weigthed sum of the incoming signals (the cij are the 
dilution coefficients) and the second term is added to capture the influence of the 
mean network activity on the local field. As an  example for the  usefulness of such a 
term the reader may consider f(S) = -yS - U/with y, 17 > 0. This adds a constant 
threshold and an  inhibitory term proportional to the overall activity 1 / N  E. Sj to the 
local field. In  a network tha t  operates with (0,l) variables (choose dyn(hj = O(h)) 
such terms are indispensable to stabilize the 0 state. 

We want the system to learn O K  uncorrelated random patterns E " ,  i.e. the E: are 
drawn independentiy f r o m a  distribution p i c ) .  'The iearning ruie is written as 

1 

which is the most general learnins rule with the properties of locality (i.e. Jij depends 
exclusively on the  pattern activities a t  sites i and j), homogeneity (i.e. the learning 
mechanism is the same for all patterns and all sites) a n d  additivity (i.e. each new 
pattern adds a modification to the already existing couplings). In the IIopfield-Lit,tle 
model and in the main text we have simply R(z ,  y) = ty. 

A simple signal-to-noise analysis suggests that  R should obey 

( R ( Z , < ) ) ~  = 0 for all t 

in order to allow the storage ratio a to be O(1). (.)( denotes the average over p(E) .  A 
further constraint on R required by the analytical solution is a factorization of R int.0 
a pre- and a postsynaptic part .  Both conditions are matched by assuming R to be  of 
the  form 

R ( ~ , Y )  = pOSt(z)[ pre(u) - (pre(E))c] (-44) 

where we have split the synaptic plasticity into a post- and a presynaptic factor, 
Consult [9,20] for neural networks with other choices of post(z) and pre(z) than just 
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post(+) = pre(z) = 2. In particular, [9] discusses the effects of non-linear functions 
post(+) on the storage and retrieval of multistate patterns. 

Equations (Al)-(A4) define a class of networks that can be solved analytically by 
simply following step-by-step the calculation outlined in [ll].  Here we only quote the 
results. Introducing the order parameters 

(A5) 
C L . *  

and the abbreviation 

(R2) := (RZ(F,8)C,i  

one obtains as the effective PSP for the single-neuron dynamics ( K  -+ CO) 

where y( t , )  is Gaussian with zero mean and variance 

From this singleneuron dynamics one can easily construct evolution equations for 
the order parameters m(t,),  9,(t,) and C(t,) := Cnn. For parallel dynamics these 
equations are 

with 
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Setting f 0, post(z) E pre(z) := z and dyn(h) E tanh(h/r)  one can easily verify 
that the resulting equations lead to the phase diagram shown in figure 1 with the 
scalings of (26)-independently of the pattern distribution. 
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